
Abstract—Evolutionary algorithms have been 

effectively used to solve multiobjective 

optimization problems with a small number of 

objectives, two or three in general. However, when 

encounter problems with many objectives (more 

than five), nearly all algorithms performs poorly 

because of loss of selection pressure in fitness 

evaluation solely based upon Pareto domination. 

In this paper, we introduce a new fitness 

evaluation mechanism to continuously 

differentiate solutions into different degrees of 

optimality beyond the classification of the original 

Pareto dominance. Here, the concept of fuzzy logic 

is adopted to define fuzzy-dominated relation. As 

a case study, the fuzzy concept is incorporated 

into the NSGA-II, instead of the original Pareto 

dominance principle. Experimental results show 

that the proposed method exhibits a better 

performance in both convergence and diversity 

than the original NSGA-II for solving many-

objective optimization problems. More 

importantly, it enables a fast convergence process. 

Index Terms- Pareto optimality, multiobjective 

evolutionary algorithm, fuzzy logic, NSGA-II 

I. INTRODUCTION 

volutionary algorithms  have  been effectively 

used to explore the Pareto-optimal front in 

multiobjective optimization problems (MOPs). In 

literature, most of these multiobjective evolutionary 

algorithms (MOEAs) and their variants based on 

evolutionary strategy, particle swarm optimization, 

differential evolution, or artificial immune system, 

work well only in problems with a small number of 

objectives, mainly in two or three dimensions. 

However, many real-world multiobjective 

optimization problems involve more than five 

conflicting objectives, which are commonly referred 

to as many-objective optimization problems and the 

performance of most MOEAs deteriorate severely in 

problems with such a large number of objectives [1]. 

The main reason that MOEAs lose the exploring 

capability in solving many-objective optimization 

problems is largely due to the ineffective definition in 

the Pareto Optimality. Consider the definition of 

Pareto-dominance relation. 
 

Pareto Dominance: 

For a minimization problem, a vector    (  )  
(       )  is said to dominate    (  )  
(       ), denoted by    , if and only if     
{     }       and    {     }      .   
 

When any two given vectors   and   are 

compared, there are only two possible conclusions 

according to Pareto-dominance: 

 Either   dominates   or   dominates  , or  

   and   are non-dominated with respect to each 

other. 

Therefore, two vectors can only be differentiated 

under the first condition. However, from the 

definition, the more the number of objectives is, the 

harder the first condition can be satisfied. For 

example, consider   dominates   in a two-dimension 

MOP and a five-dimension MOP. To arrive at this 

relationship, in the two-dimension problem,   only 

need to be better than   in one objective and no 

worse in the other objective. However in the five-

dimension problem,   should be better than   in at 

least one objective and no worse than   in the 

remaining objectives. On the other hand, it is fairly 

easy to arrive at “non-dominated with respect to each 

other” relation when two individuals are compared 

based on Pareto domination in a higher-dimensional 

problem.  

Figure 1 shows the percentage of non-dominated 

individuals in the initial populations (i.e., set at 100, 

200 and 500) randomly generated for the benchmark 

function DTLZ 2 [2], a scalable benchmark problem, 

under various number of objectives (i.e., from 2 to 

50). Every data point is derived from 50 independent 

runs. From the figure, the proportion of non-

dominated individuals rises quickly with the number 

of objectives increasing from two to five. When the 

number of objectives exceeds five, the proportion of 

non-dominated individuals in a randomly generated 

initial population is higher than 90%. This leads to no 

selective pressure during the evolutionary process no 

matter how MOEA is designed.  
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Figure 1: Percentage of non-dominated individuals 

Therefore, although Pareto optimality is effective 

to ensure the convergence of the population in low 

dimension problems, it’s nearly as ineffective 

maintaining selection pressure during evolution 

process in many-objective optimization problems.  

In addition to the deficiency in  the definition of 

Pareto dominance stated above, other complications  

such as visualization of high-dimension objective 

spaces [1], a large number of individuals needed to 

well represent the Pareto front [1], and a very high 

computational cost [3] have contributed to the 

challenges of solving many-objective optimization 

problems. 

From the above discussions, all of the difficulties 

are caused by a large number of objectives. Naturally, 

the efforts in addressing this issue have led to 

strategies to reduce the number of objectives without 

losing information. For instance, Brockhoff and 

Zitzler [3] first identify conflict and non-conflict 

relationships between each pair of objectives and 

then combine non-conflict objectives into one 

objective. Deb and Saxena [4] propose a principle 

component analysis method to adaptively finding the 

correct lower-dimensional interactions by 

progressing iteratively from the interior of the search 

space towards the Pareto-optimal region. Singh et al. 

[5] identifies whether each objective is redundant or 

not based on an approximated non-dominated front 

which is roughly generated beforehand.  

Although objective reduction works in some 

special conditions, there remain serious limitations. 

Of course, in the real-world environment, there exist 

problems whose objectives cannot be further reduced. 

In these problems, the methods stated above can only 

rely upon a relative order of importance of the 

objectives [4]. In some problems a very small number 

of objectives can be eliminated, but it may not make 

any difference. For example, in a ten-dimension 

problem, reducing only one or two objectives does 

not help much to solve the problem in an effective 

manner. Even if the number of objectives is reduced 

sufficiently, it is not clear how the Pareto front 

derived in the reduced low-dimensional space can 

portray the true Pareto front in the original high-

dimension space. 

Moreover, Said et al. [6] use the decision maker’s 

preferences to set an error constant   and incorporate 

it into Pareto-dominance to guide the search toward 

the area of interest in the Pareto front. 

Because of the drawbacks in objective reduction 

methods and the lacking of preference information in 

most of the real-world applications, in this paper, our 

focus is placed solely on designing a new fitness 

measure through the definition of Pareto dominance 

to continuously differentiate individuals into different 

degrees of optimality beyond the classification of the 

original Pareto-dominance. Here, the notion of fuzzy 

logic [7] is adopted. Based on it, a fuzzy-dominated 

relation (FD) is defined and incorporated into the 

NSGA-II [8], as a case study, instead of the original 

Pareto dominance principle. The resulted fuzzy 

dominance NSGA-II is applied to search for Pareto 

optimal set in many-objective optimization problems 

by maintaining the selection pressure toward the 

Pareto front throughout the entire evolutionary 

process. Please note the same fuzzy dominance 

concept can be easily incorporated into other MOEA 

designs. 

The remaining sections complete the presentation 

of this paper. Section II outlines selected approaches 

for fitness evaluations in literature. Section III 

elaborates the proposed fuzzy Pareto-dominated 

relation in detail and how to incorporate it into the 

NSGA-II. Section IV details the experiment setting 

and findings for two selected scalable benchmark 

problems. Finally, a conclusion is drawn in Section V 

along with pertinent observations. 

II. LITERATURE REVIEW 

In this section, first, the fitness assignment based 

on Pareto dominance principle in NSGA-II is briefly 

overviewed. Afterwards, some fitness evaluation 

approaches in literature are reviewed. Majority of 

existing multiobjective optimization algorithms 

exclusively uses the concept of Pareto domination. In 

these MOEAs, two solutions are compared on the 

basis of whether one dominates the other or not. 
 

Pareto Optimality: 

An individual     is said to be Pareto optimal with 

respect to   if and only if there is no       for 

which    (  ) dominates     ( ) .  ( ) is then 

called Pareto optimal (objective) vector.   

Remarks: Any improvement in a Pareto optimal 

individual in one objective must lead to deterioration 

in at least one other objective. 
 

Pareto Optimal Set: 

The set of all the Pareto optimal individuals in the 

decision space is called Pareto optimal set (PS), 

   {    |      ( )   ( )  }.   



 

Pareto Front: 

The image of the Pareto optimal set (PS) in the 

objective space is called Pareto front (PF),    
{ ( ) |     }.   
 

In other words, a set of all Pareto optimal 

individuals form a tradeoff surface in the objective 

space. The basic definitions of dominance and Pareto 

optimality played an important role in the 

development of effective MOEAs. However, in MOP, 

Pareto domination does not define a complete 

ordering among the solutions in the objective space. 

Secondly, it does not measure that how much one 

solution is better than another one. A brief overview 

is given below to outline available researches for 

fitness evaluation in literature.  

A. Existing Approaches for Fitness Evaluation 

The first class of the existing approaches for 

fitness evaluation uses scalar methods instead of 

Pareto dominance to assign each individual a fitness 

value and compare them based on it. This class of 

designs can be further divided into four different 

categories. The first category using predefined 

weighting coefficients such as Weighted Sum (WS) 

[9] and Weighted Min-Max (Wmin-max) [10]. The 

second category focuses on extreme value of 

individuals, for example Maximum Ranking (MR) 

[9], Global Detriment (GD) [9], and Profit (PF) [9]. 

The third concerns about direct comparison of 

individuals including Favour Relation (FR) [9], k-

dominance (KD) [11], and L-dominance (LD) [11]. 

The last category transforms objectives into 

constraints, for instance Ɛ-Constraint [10] and Goal 

Attainment (GAt) [10].  

In the second class, suggested methods modify the 

Pareto-dominance to adapt it for the higher 

dimension problems, such as Pareto  -Dominance 

[12], Pareto  -Dominance [12], and Pareto cone  -

Dominance [12]. Predefined parameters are 

incorporated into all of these methods. Each modified 

Pareto dominance design is a relaxing form of Pareto 

dominance in that it makes one individual dominates 

others easier in higher dimension optimization 

problems. 

The third class is based on the idea of 

performance metrics. IBEA [13] is probably the most 

successful implementation of this class in that it has 

been shown to be more effective than other MOEAs 

in high dimension MOPs. There are other methods of 

this type: Volume Dominance (VD) [11] is based on 

the volume of dominated objective space by the 

individual, Contraction/Expansion of Dominated 

Area (CE) [11] adjusts the selection process by 

changing the size of individuals’ dominance area and 

distance to the best known solution. GB [9] measures 

the best reference point’s value that dominates the 

whole population.  

Given the above discussions, researchers mainly 

focus on two different aspects in the fitness 

evaluation. First, Pareto dominance is replaced by 

another design, such as scalar method or performance 

metrics. Both approaches assign each approximation 

front an exact score and use this value for comparison. 

However, both of them only consider one specific 

characteristic of the front and the score generated 

cannot evaluate the front comprehensively. Second, 

Pareto dominance is modified by some predefined 

parameters. The choice of these parameters greatly 

affects the outcomes of fitness assignment. However, 

there exists no standard way or effective guideline to 

determine these parameters. In respond to these 

challenges encountered by the existing approaches, a 

new fitness evaluation measure based on fuzzy logic 

is proposed in this paper. 

B. Previous Works in Fuzzy Dominance  

In addition, there exist three known works 

following a similar research line. 

Farina and Amato [14] designed the fuzzy-based 

definitions of optimality and dominated for human 

decision making in many-objectives optimization 

problems. The fuzzy definitions process preference 

information provided by the decision maker and 

generate a parameter whose value ranges from zero 

to one in order to compute different subsets of Pareto 

optimal solution set. When the value of the above 

parameter set to zero, the introduced definition is the 

same as classical Pareto-optimality. When the 

parameter value is increased, different subset of 

Pareto optimal solutions can be obtained 

corresponding to higher degrees of optimality. 

In [15], a fuzzy Pareto dominance concept is 

introduced to compare two solutions and uses the 

scalar decomposition method of MOEA/D only when 

one of the solutions fails to dominate the other in 

terms of a fuzzy dominance level. 

Köppen and Garcia [16] presented a generic 

ranking scheme that assigns fitness values, which 

represent the ”dominating strength” of an individual 

against all other individuals in the population, to any 

set of vectors in a scale-independent manner. The 

fitness values reflect dominance degrees of vectors. 

Based on this ranking scheme, an extension of the 

Standard Genetic Algorithm, Fuzzy-Dominance-

Driven GA (FDD-GA), was proposed. 

III. PROPOSED METHOD 

A. Background Knowledge of Fuzzy Logic  

In this study, we define the membership function 

based on left Gaussian membership function (   ) 



[17], as shown in Figure 2 (in which      and 
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Figure 2: Left Gaussian membership function 

 

This left Gaussian membership function is then 

applied in the definition of fuzzy-dominance relation. 

There exist several definitions in set theoretic 

operations which could be used to combine different 

fuzzy sets [17]. One definition uses “max” and “min” 

operations as follows: 

     ( )     [  ( )   ( )] 
     ( )     [  ( )   ( )] 
where   ( ) is referring to the membership value of 

  under fuzzy membership function A. The second 

definition uses “s-norm” and “t-norm” as follows: 

 s-norm:        (     ) 

 t-norm:        (       ) 

The third definition is based on the product of 

fuzzy sets: 

     ( )    ( )    ( )    ( )  ( ) 

     ( )    ( )  ( ) 

In the method proposed herein, according to the 

third definition, the individual’s performance in each 

objective is considered as a fuzzy set and all these 

fuzzy sets are combined through product operator as 

the intersection of these fuzzy sets. Assume fuzzy set 

A describes how individual a is better than individual 

b in the first objective and fuzzy set B quantifies how 

individual a is better than individual b in the second 

objective.     is the intersection of fuzzy sets A 

and B. It implies how individual a is better than 

individual b in both first and second objectives. The 

probability value of      is           . In 

fuzzy Pareto-dominance relation, comparison of two 

individuals in each objective is considered as a fuzzy 

set. Therefore, comparison of two individuals in all 

objectives is attained by the intersection of all fuzzy 

sets. 

B. Fuzzy-dominance Relation  

Without loss of generality, the definition of fuzzy-

dominance relation is given in the following. 
 

Fuzzy-Dominance Relaton: 

In the  -objective minimization problem, given two 

individuals    (  )  (       ) and   
 (  )  (       ) , define  ( )   (  )  
 (  )  (             ) as the performance of 

  with respect to   and  ( )   (  )   (  )  
(             )  as the performance of   

compared with  , respectively. The modified 

Gaussian membership function transforms each term 

of   ( ) and  ( ) into a probability measure in [0, 1]. 

That is  ( )    ( ( ))  (  
      

 )  and 

 ( )    ( ( ))  (  
      

 ) . Here, in  ( ) , 

each   
          is considered as a fuzzy set and 

set theoretic operators are applied to the product of 

all these fuzzy sets. Then we obtain a fuzzy product 

value of  , which is         
    

    
      

 . 

Similarly, fuzzy product value of   is defined 

accordingly as          
    

    
      

 .  

Finally, compare         
  and          

 , a 

vector  is said to fuzzy-dominate   (denoted by 

    ) if and only if         
          

 .    
 

If         
          

 , then   and   are fuzzy 

non-dominated with respect to each other. From the 

definition of         , if two individuals are fuzzy 

non-dominated with respect to each other, then both 

of them are also Pareto non-dominated with respect 

to each other. However, two individuals which are 

Pareto non-dominated with respect to each other do 

not necessary lead to that the same relationship in 

fuzzy non-domination. This characteristic makes 

fuzzy-dominance relation more effective than Pareto-

dominance relation in many-objective optimization 

problems in which Pareto-dominance principle 

cannot preserve the needed selection pressure 

throughout the evolutionary process. 

On the contrary, fuzzy-dominance relation can 

continue classifying high-dimensional individuals 

into different degrees of optimality. Therefore, fuzzy-

dominance can be applied to assign fitness measures 

in the evolution process so as to overcome difficulties 

caused by the original Pareto dominance definition.  

C. Fitness Assignment Based on Fuzzy-dominance 

Assuming there are   individuals in the 

competition pool, every individual is paired with 

other     individuals respectively, forming     

pairs of competitions. For individual   , in each of 

    pairs, it is compared with the other individual 

  using fuzzy-dominance relation and generates both 

fuzzy product values of          
  and         

 . 

Then, fuzzy product value of   is normalized as 

        
 (        

          
 )⁄ . This new 

normalized value is considered as the performance of 

  compared with  . After calculating each pair, add 

all performance values of   together to obtain a sum 

value. This sum value is then divided by (   ) and 



the divided value is regarded as the fitness measure 

of individual  . Table I shows this fuzzy fitness 

assignment process. 
 

TABLE I: Fuzzy fitness assignment process 
Input:  a competition pool contains   individuals 
FOR       

     % calculate sum value of point   
      ( )   ;     % initialize sum value of point   
     FOR       
        % calculate performance value of   with  ,            

                  
 (        

          
 

)⁄  

        ( )   ( )   ; 
    END 
END 

Output: a  -dimension vector   with each dimension  
             represents the sum value of an individual 

D. Fuzzy-Dominance NSGA-II 

In the original NSGA-II, two individuals are 

compared based on their rank values and crowding-

distances. Pareto-dominance relation determines the 

rank value of each individual. In the proposed 

improved design, we will use fuzzy fitness 

assignment method instead, which is based on fuzzy-

dominance relation to give each individual a rank 

value. After the rank value is determined, the same 

crowding-distance is used as the original design in 

NSGA-II. 
 

TABLE II: The process of rank value assignment 
Input:  a competition pool P contains   individuals 
r=1;    % set initial rank value 
% set the initial number of population that has been  
    assigned rank value 
   ; 
% threshold value is heuristically chosen 

      ; 
IF     
  % first assign fitness value to each individual   
  s=Fuzzy fitness assignment process; 
  % fuzzy-non-dominated sorting 
   FOR     (   ) 
         % if fuzzy fitness value of   is larger than a   
             predefined threshold, it will be added to front r 
         IF  ( )     (   ) 
                   ( )   ;     % assign rank to   
                  ; 
                 { }; 
         END 

END 
r=r+1;      

END 

Output: rank values of   individuals     
 

For every individual, if its sum value is larger 

than a predefined threshold, then place it in the first 

rank. After assigning rank value 1, remove all 

individuals in the first rank and consider the 

remaining ones. Do the same to assign rank value 2, 

rank value 3 and so on. One individual is fuzzy non-

dominated with respect to others in the same rank. 

After all individuals have rank values assigned, 

calculate the crowding-distance for each individual. 

Table II explains how to assign the rank value to each 

individual and perform the fuzzy non-dominated 

sorting. 

The NSGA-II is modified by fuzzy-dominance 

relations and the corresponding fuzzy fitness 

assignment. In order to fairly compare the 

performance of convergence by using fuzzy-

dominance relations and Pareto-dominance relations, 

we use the same structure of the original NSGA-II. 

The only difference is that in the original NSGA-II, 

the fitness assignment is completed by Pareto-

dominance, while in the modified NSGA-II 

(FNSGA-II), fuzzy-dominance principle is applied. 

Table III explains each step of the modified NSGA-II 

in detail. 

E. Relation between Pareto Dominance and Fuzzy 

Pareto Dominance 
 

TABLE III: The fuzzy-dominance NSGA-II 
Input:    population size; the number of generations; 
             fitness function; search space; Gaussian  
             membership function;  
Step1:   Initialize populations 

A random parent population    is created. The 
population is sorted based on the fuzzy-
dominance. Each solution is assigned a rank 
equal to its fuzzy-domination level where 1 is the 
best level. Binary tournament selection, 
recombination, and mutation operators are used 

to create a child population    of size  . 
Set      

Step2:            
 Combine parent and children population.       
 The population    will have size   . 

Step3:   F=fuzzy-nondominated-sort (  ) until 
             |    |   . Population   is sorted based on  
             the non-domination sorting. The new parent    
             population      is formed by adding  
             solutions from the first front to the next  

             best front before the size exceeds  . 
Step4:   Calculate crowding distance-assignment     

             (  ) and include  -th non-dominated front   
             in the parent population               
Step5:  Sort in descending order (    ,   ) and   
             choose the first   elements of     : 

                      [   ]
 Step6:      =make-new-pop (    ) 

This population of size   is now used for 
selection, crossover, and mutation to create a 
new population. 

 

In order to compare two different types of Pareto 

dominance, we first consider the difference between 

fuzzy set and crisp set. From [17], a fuzzy set is 

defined on a universe of discourse   (which provides 

the set of allowable values of a variable) by a 

membership function. The membership function 

measures how similar an element in   is to the given 

fuzzy set. The measurement result takes on value in a 

close interval, [0, 1]. Therefore, an element can 

belong to more than one fuzzy set with different 

degrees of similarity. For a fuzzy set  ,    ̅  



         ̅   . However, there does not exist one 

element belongs to two different crisp set. There are 

only two possible conditions between a crisp set    

and an element  : 

      and                  

      and                         

Obviously, fuzzy Pareto dominance is the relation 

between fuzzy sets while Pareto dominance only 

applies to the crisp sets. Therefore, for two 

individuals a and b, a fuzzy Pareto dominates b 

implies a partially Pareto dominates b or a Pareto 

dominates b with the probability in [0, 1]. When the 

possibility equals 1, a fuzzy Pareto dominates b 

implies a Pareto dominates b. When the possibility 

equals 0, a fuzzy Pareto dominates b means a is 

Pareto dominated by b. The concept linguistic 

variable is applied to describe this dominance degree. 

Linguistic variables are words and sentences in 

natural language describing the characteristic less 

specific than numerical ones [17]. Here, ‘fuzzy 

Pareto dominance’ is a linguistic variable; it can be 

decomposed into multiple terms based on different 

dominance degree (possibility):  

 Pareto dominance (possibility = 1) 

 Strong dominance (0.8   possibility < 1) 

 Weak dominance (0.5   possibility < 0.8) 

 Weak dominated (0.2   possibility < 0.5) 

 Strong dominated (0 < possibility < 0.2) 

 Pareto dominated (possibility = 0) 

From the above discussion, Pareto dominance can 

be regarded as a special case of fuzzy Pareto 

dominance.   

F. Comparison Between Our Method with Others  

There exist some delicate distinctions between the 

proposed method and three other fuzzy-based 

approaches [14-16]. The distinctions can be roughly 

divided into three steps: fuzzification, inference and 

fuzzy rules, and defuzzification. 

1) The proposed method  

 Fuzzification 

In each objective, the single left Gaussian 

membership function is applied to transfer the 

difference between both solutions to a fuzzy value. 

 Inference and Fuzzy Rules 

Product operation is applied to combine these 

fuzzy input values.  

 Defuzzification 

     Compare the fuzzy output with a heuristically 

chosen threshold, which is related to parameters 

of left Gaussian membership function used in 

fuzzification step. 

2) Farina and Amato’s Method [14] 

 Fuzzification 

     When compare a pair of solutions, all objectives 

of each solution are divided into three types: 

objectives better than, equal to, or worse than the 

other; each of which corresponds to left, center, 

and right Gaussian membership function, 

respectively.  

 Inference and Fuzzy Rules 

 t-norm operator is applied here.  

 Defuzzification 

     Compare the fuzzy output with a parameter 

generated by the definition of K-Optimality. 

3) Method by Nasir et al., [15] 

 Fuzzification 

If one solution is better than the other in one 

objective, its membership function value of this 

objective is 1; otherwise, this value will be 

determined by the difference between two 

solutions in this objective through a pre-defined 

membership function. 

 Inference and Fuzzy Rules 

Product operation is applied.  

 Defuzzification 

     Compare the fuzzy output with a domination 

threshold value which is related to decomposition 

method. 

4) Köppen, Garcia and Nickolay’s Method [16] 

 Fuzzification 

When compare two solutions, in each objective, 

the minimum value between them is calculated as 

the membership function value in this objective 

 Inference and Fuzzy Rules 

Product operation is applied.  

 Defuzzification 

For each solution, all objective values of it are 

multiplied. Divide the production result obtained 

from the last step by multiplication of each 

solution, respectively. Compare these two results. 

IV. EXPERIMENTAL RESULTS 

A. Selected MOEAs for Comparison 

In the experiment, three state-of-the-art MOEAs 

are chosen for comparison. They are the original 

NSGA-II [13], NSGA-II based on fuzzy-dominance 

relation (FNSGA-II), and SPEA 2 [18].  

SPEA 2 [18] assigns a strength value to each 

individual in both main population and elitist archive 

which incorporates both dominated and density 

information. To avoid individuals dominated by the 

same archive members having identical fitness values, 

both dominating and dominated relationships are 

taken into account. The final rank value of an 

individual is assigned as the sum of the strengths of 

the individuals that dominate it. The density value of 

each individual is obtained by the nearest neighbor 



density estimation. The final fitness value is the sum 

of rank and density values.  

B. Selected Benchmark Functions 

Two widely used scalable many-objective 

benchmark problems, DTLZ2 and DTLZ3 [2], are 

chosen to evaluate the performance. In this 

experiment, chosen MOEAs are tested in three-

dimension, five-dimension, and ten-dimension. From 

[19], the characteristics of these two test functions are 

with high-dimension objective space and multiple 

global optima.  

C. Selected Performance Metrics 

In this experiment, three performance metrics are 

chosen to quantify the performance. Generational 

Distance (GD) [20] measures the convergence of the 

Pareto front. Inverted Generational Distance (IGD) 

[21] considers both convergence and diversity at the 

same time, while Spacing [22] measures the 

distribution of individuals in the Pareto front. The 

less the GD, IGD, and Spacing values are, the better 

is the algorithm’s performance.  

D. Parameter Setting in Experiment 

The population size in all three MOEAs is set to 

be 500 for all test instances. The stopping criterion is 

set at 250 generations. Initial populations are 

generated by uniformly randomly sampling from the 

search space in all the algorithms.  

The simulated binary crossover (SBX) and 

polynomial mutation are used. The crossover 

operator generates one offspring, which is then 

modified by the mutation operator. Following the 

practice in [8], the distribution indexes in SBX and 

the polynomial mutation are set to be 20. The 

crossover rate is 1.00, while the mutation rate is 1/n. 

and n is the number of decision variables. 

E. Experiment Results 

Detailed comparison results for 20 independent 

trials are presented in Tables IV-XI. In Tables IV-IX, 

each metric value is obtained from the mean value of 

20 trials. Tables X-XI lists the mean time of 20 trials 

for each algorithm attaining a predefined GD value in 

both benchmark functions. 

Tables IV-VI provide the experimental results for 

comparing the three chosen MOEAs in DTLZ2 given 

three-, five-, and ten-dimensional objectives.  

 
TABLE IV: Performance metrics in 3-D DTLZ2 

 IGD GD Spacing 

NSGA-II 0.0927 0.0829 0.0120 

FNSGA-II 0.0818 0.0778 0.0120 

SPEA 2 0.1221 0.1113 0.0205 
 

 

TABLE V: Performance metrics in 5-D DTLZ2 

 IGD GD Spacing 

NSGA-II 1.1492 1.9309 0.1798 

FNSGA-II 0.7219 1.2967 0.0001 

SPEA 2 1.2093 2.1092 0.0115 
 

TABLE VI: Performance metrics in 10-D DTLZ2 

 IGD GD Spacing 

NSGA-II 1.0209 1.4092 0.0250 

FNSGA-II 0.7532 0.9938 0.0001 

SPEA 2 1.2124 1.5023 0.0119 

 

Tables VII-XI present the experiment results for 

comparing the three chosen MOEAs in DTLZ3 given 

three-, five-, and ten-dimensional objectives.  

 
TABLE VII: Performance metrics in 3-D DTLZ3 

 IGD GD Spacing 

NSGA-II 3.1409 14.7021 1.0091 

FNSGA-II 2.7201 12.0692 0.8238 

SPEA 2 3.1965 16.0962 0.9012 
 

TABLE VIII: Performance metrics in 5-D DTLZ3 

 IGD GD Spacing 

NSGA-II 5.3024 19.9821 1.5329 

FNSGA-II 5.2612 14.9503 1.1439 

SPEA 2 13.3097 18.0254 3.3784 
 

TABLE IX: Performance metrics in 10-D DTLZ3 

 IGD GD Spacing 

NSGA-II 18.9419 24.8443 5.0279 

FNSGA-II 6.6543 16.0925 0.8348 

SPEA 2 19.3178 26.0912 2.3176 

 

From above results, in all test instances, NSGA-II 

based on fuzzy-dominance principle performs better 

than the other two algorithms. While the number of 

objectives increases, the improved performance of 

fuzzy NSGA-II based on fuzzy-dominance is 

growing appreciably. 

In the following experiment, we are interested in 

how much improvement can be attained in term of 

convergence time for the NSGA-II based on fuzzy-

dominance relation. The problem is posted as: if in 

five- and ten-dimension DTLZ2 problem, after 250 

generations, the values of GD in NSGA-II are 1 and 

1.5, respectively, how many generations are needed 

for FNSGA-II to reach the same value in GD? The 

same experiment is repeated on DTLZ3 as well. Here, 

in five- and ten-dimension DTLZ3 problem, after 250 

generations, the values of GD in NSGA-II are 20 and 

25, respectively. Tables X-XI show the experiment 

result in DTLZ2 and DTLZ3. 

 
TABLE X:  Comparison result in DTLZ 2 

 5-D (GD=1) 10-D (GD=1.5) 

NSGA-II 237 229 

FNSGA-II 107 62 
 

 

TABLE XI: Comparison result in DTLZ 3 



 5-D (GD=20) 10-D (GD=25) 

NSGA-II 249 243 

FNSGA-II 161 103 

 

The above experiment results support our 

assumption that NSGA-II based on fuzzy-dominance 

provides a faster convergence performance than that 

of the original NSGA-II. 

V. CONCLUSION 

From the experimental results, given the same test 

problem, NSGA-II based on fuzzy-dominance 

ensures a better performance in both convergence and 

diversity. Moreover, its evolution process is fast. The 

performance improvement from Pareto-dominance 

relations to fuzzy-dominance relations is clearly 

appreciable. Continuing research will be extended to 

other state-of-the-art designs in MOEA. 
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